[알고리즘] Graph / Tree / BST
코테/자료구조, 알고리즘

[알고리즘] Graph / Tree / BST

반응형

1.  Graph

컴퓨터 공학에서 이야기 하는 자료구조 그래프는 전혀 다른 모습을 가지고 있습니다. 자료구조의 그래프는 마치 거미줄처럼 여러개의 점들이 선으로 이어져 있는 복잡한 네트워크 망과 같은 모습을 가지고 있습니다.

 

그래프는 여러개의 점들이 서로 복잡하게 연결되어 있는 관계를 표현한 자료구조입니다. 직접적인 관계가 있는 경우 두 점 사이를 이어주는 선이 있습니다. 간접적인 관계라면 몇 개의 점과 선에 걸쳐 이어집니다. 하나의 점을 그래프에서는 정점(vertex)이라고 표현하고, 하나의 선은 간선(edge) 이라고 합니다. 

알아둬야 할 그래프 용어들

  • 무(방)향그래프(undirected graph): 서울에서 부산으로 갈 수 있듯, 반대로 부산에서 서울로 가는것도 가능합니다.
  • 단방향(directed) 그래프로 구현 된다면 서울에서 부산을 갈 수 있지만, 부산에서 서울로 가는 것은 불가능해야 합니다.(혹은 그 반대). 만약 두 지점이 일방통행 도로로 이어져 있다면 단방향인 간선으로 표현할 수 있습니다.
  • 진입차수(in-degree) / 진출차수(out-degree): 한 정점에 진입(들어오는 간선)하고 진출(나가는 간선)하는 간선이 몇 개인지를 나타냅니다.
  • 인접(adjacency): 두 정점간에 간선이 직접 이어져 있다면 이 두 정점은 인접한 정점입니다.
  • 자기 루프(self loop): 정점에서 진출하는 간선이 곧바로 자기 자신에게 진입하는 경우 자기 루프를 가졌다 라고 표현합니다. 다른 정점을 거치지 않는다는 것이 특징입니다.
  • 사이클(cycle): 한 정점에서 출발하여 다시 해당 정점으로 돌아갈 수 있다면 사이클이 있다고 표현합니다.

 

그래프의 표현 방식: 인접 행렬 & 인접 리스트

 

  1) 인접 행렬

알아둬야 할 그래프 용어들에서 인접(adjacency)이라는 용어를 찾을 수 있습니다. 두 정점을 바로 이어 주는 간선이 있다면 이 두 정점은 인접하다고 이야기합니다. 인접 행렬은 서로 다른 정점들이 인접한 상태인지를 표시한 행렬으로 2차원 배열의 형태로 나타냅니다. 만약 A라는 정점과 B라는 정점이 이어져 있다면 1(true), 이어져 있지 않다면 0(false)으로 표시한 일종의 표입니다. 만약 가중치 그래프라면 1 대신 관계에서 의미 있는 값을 저장합니다. 위의 내비게이션 예제라면, 거리를 입력하면 좋습니다. 네비게이션 그래프를 인접 행렬로 표현하면 다음과 같습니다.

네비게이션 비가중치 그래프의 인접행렬

  • A의 진출차수는 1개 입니다: A —> C
    • [0][2] === 1
  • B의 진출차수는 2개 입니다: B —> A, B —> C
    • [1][0] === 1
    • [1][2] === 1
  • C의 진출차수는 1개입니다: C —> A
    • [2][0] === 1

인접 행렬은 언제 사용할까?

한 개의 큰 표와 같은 모습을 한 인접 행렬은 두 정점 사이에 관계가 있는지, 없는지 확인하기에 용이합니다.

예를 들어, A에서 B로 진출하는 간선이 있는지 파악하기 위해선 0 번째 줄의 1 번째 열에 어떤 값이 저장되어있는지 바로 확인할 수 있습니다. 가장 빠른 경로(shortest path)를 찾고자 할 때 주로 사용됩니다.

 

  2) 인접 리스트

인접 리스트는 각 정점이 어떤 정점과 인접한지를 리스트의 형태로 표현합니다. 각 정점마다 하나의 리스트를 가지고 있으며, 이 리스트는 자신과 인접한 다른 정점을 담고 있습니다. 위 그래프를 인접 리스트로 표현하면 다음 그림과 같습니다.

네비게이션 그래프의 인접 리스트 예시

 

B는 A와 C로 이어지는 간선이 두개가 있는데, 왜 A가 C보다 먼저죠? 이 순서는 중요한가요?

보통은 중요하지 않습니다다. 그래프, 트리, 스택, 큐 등 모든 자료 구조는 구현하는 사람의 편의와 목적에 따라 기능을 추가/삭제할 수 있습니다. 그래프를 인접 리스트로 구현할 때, 정점별로 살펴봐야 할 우선 순위를 고려해 구현할 수 있습니다. 이때, 리스트에 담겨진 정점들을 우선 순위별로 정렬할 수 있습니다. 우선 순위가 없다면, 연결된 정점들을 단순하게 나열한 리스트가 됩니다.

  • 우선 순위를 다뤄야 한다면 더 적합한 자료구조(ex. queue, heap)를 사용하는 것이 합리적 입니다. 따라서 보통은 중요하지 않습니다. (언제나 예외는 있습니다.)

 

인접 리스트는 언제 사용할까?

메모리를 효율적으로 사용하고 싶을 때 인접 리스트를 사용합니다.

인접 행렬은 연결 가능한 모든 경우의 수를 저장하기 때문에 상대적으로 메모리를 많이 차지합니다.

 

Graph Algorithm

그래프의 탐색은 하나의 정점에서 시작하여 그래프의 모든 정점들을 한 번씩 방문(탐색)하는 것이 목적입니다. 그래프의 데이터는 배열처럼 정렬이 되어 있지 않습니다. 그래서 원하는 자료를 찾으려면, 하나씩 모두 방문하여 찾아야 합니다.

지하철 노선도를 보여주는 애플리케이션에서 경로를 탐색할 때에는, 최단 경로나 최소 환승 등 하나의 목적에도 여러 가지 방법이 있습니다. 이처럼 그래프의 모든 정점 탐색 방법에도 여러 가지가 있습니다. 그중에서 가장 대표적인 두 가지 방법, DFS와 BFS 이 둘은 데이터를 탐색하는 순서만 다를 뿐, 모든 자료를 하나씩 확인해 본다는 점은 같습니다.

 

한국에서 미국으로 가는 비행기를 예약하려고 합니다. 비행편에 따라 직항과 경유가 있습니다. 만약 경유를 하게 된다면, 해당 항공사가 필요로 하는 공항에 잠시 머물렀다가 가기도 합니다. 경유를 하는 시간은 비행편마다 다르고, 경유지도 다릅니다. 이렇게 다양한 여정 중에서, 최단 경로를 알아내려면 어떻게 해야 할까요?

BFS(Breadth-First Search)

 

한국을 기준으로 미국까지 가는 방법을 가까운 정점부터 탐색합니다. 그리고 더는 탐색할 정점이 없을 때, 그 다음 떨어져 있는 정점을 순서대로 방문합니다. 직항이라면 한국과 미국 사이에 어떠한 경유지도 없기 때문에 제일 가까운 정점에 미국이 있습니다. 경유지가 있다면 직항보다 거리가 멀다는 사실을 확인할 수 있습니다. 이렇게, 너비를 우선적으로 탐색하는 방법을 Breadth-First Search, 너비 우선 탐색이라고 합니다. 주로 두 정점 사이의 최단 경로를 찾을 때 사용합니다. 만약, 경로를 하나씩 전부 방문한다면, 최악의 경우에는 모든 경로를 다 살펴보아야 합니다.

 

 

DFS(Depth-First Search)

그렇다면, 한국에서 출발하는 항공기의 모든 경로 중에 미국에 도착하는 여정을 알아내고 싶을 때에는 DFS를 사용합니다.

비행기 티켓이 없다면 어떤 비행기가 미국으로 가는 것인지 알 수 없습니다. 이때 비행기를 타고 여러 나라를 방문하면서, 마지막에 미국에 도착하는 경로를 찾아야 합니다. DFS는 하나의 경로를 끝까지 탐색한 후, 미국 도착이 아니라면 다음 경로로 넘어가 탐색합니다. 하나의 노선을 끝까지 들어가서 확인하고 다음으로 넘어가기 때문에, 운이 좋다면 단 몇 번만에 경로를 찾을 수 있습니다. 또 미국으로 가는 길이 아님을 미리 체크할 수 있다면, 바로 그 순간 다음 탐색으로 넘어갈 수 있습니다.

이렇게, 깊이를 우선적으로 탐색하는 방법을 Depth-First Search, 깊이 우선 탐색이라고 합니다. 한 정점에서 시작해서 다음 경로로 넘어가기 전에 해당 경로를 완벽하게 탐색할 때 사용합니다. BFS보다 탐색 시간은 조금 오래 걸릴지라도 모든 노드를 완전히 탐색할 수 있습니다. 만약, BFS로 탐색을 하게 된다면 제일 첫 번째 경로가 미국행이라도, 다른 모든 경로를 살펴보아야 합니다.

 

 

BFS와 DFS는 모든 정점을 한 번만 방문한다는 공통점을 가지고 있지만, 사용할 때의 장단점은 분명하기 때문에 해당 상황에 맞는 탐색 기법을 사용해야 합니다.

(용어가 햇갈린다면.. BFS는 여러노드를 조지고 DFS는 한곳에 관련된 노드를 조지는 것이라고.. 크루분께서 설명 해주셨습니다.)

 

 

2.  Tree

자료구조 Tree는 이름 그대로 나무의 형태를 가지고 있습니다. 정확히는 나무를 거꾸로 뒤집어 놓은 듯한 모습을 가지고 있습니다. 그래프의 여러 구조 중 무방향 그래프의 한 구조로, 하나의 뿌리로부터 가지가 사방으로 뻗은 형태가 나무와 닮아 있다고 해서 트리 구조라고 부릅니다.

마치 가계도와 흡사해 보이는 이 트리 구조는 데이터가 바로 아래에 있는 하나 이상의 데이터에 무방향으로 연결된 계층적 자료구조입니다. 데이터를 순차적으로 나열시킨 선형 구조가 아니라, 하나의 데이터 뒤에 여러 개의 데이터가 존재할 수 있는 비선형 구조입니다. 트리 구조는 계층적으로 표현이 되고, 아래로만 뻗어나가기 때문에 사이클이 없습니다.

[그림] 트리 구조

트리 구조는 루트(Root) 라는 하나의 꼭짓점 데이터를 시작으로 여러 개의 데이터를 간선(edge)으로 연결합니다. 각 데이터를 노드(Node)라고 하며, 두 개의 노드가 상하계층으로 연결되면 부모/자식 관계를 가집니다. 위 그림에서 A는 B와 C의 부모 노드(Parent Node)이고, B와 C는 A의 자식 노드(Child Node)입니다. 자식이 없는 노드는 나무의 잎과 같다고 하여 리프 노드(leaf Node)라고 부릅니다.

용어정리

  • 노드(Node) : 트리 구조를 이루는 모든 개별 데이터
  • 루트(Root) : 트리 구조의 시작점이 되는 노드
  • 부모 노드(Parent node) : 두 노드가 상하관계로 연결되어 있을 때 상대적으로 루트에서 가까운 노드
  • 자식 노드(Child node) : 두 노드가 상하관계로 연결되어 있을 때 상대적으로 루트에서 먼 노드
  • 리프(Leaf) : 트리 구조의 끝지점이고, 자식 노드가 없는 노드

[그림] 트리 구조의 레벨과 서브 트리

자료구조 Tree는 깊이와 높이, 레벨 등을 측정할 수 있습니다.

깊이 (depth)

트리 구조에서는 루트로부터 하위 계층의 특정 노드까지의 깊이(depth)를 표현할 수 있습니다. 루트 노드는 지면에 있는 것처럼 깊이가 0입니다. 위 그림에서 루트 A의 depth는 0이고, B와 C의 깊이는 1입니다. D, E, F, G의 깊이는 2입니다.

레벨(Level)

트리 구조에서 같은 깊이를 가지고 있는 노드를 묶어서 레벨(level)로 표현할 수 있습니다. depth가 0인 루트 A의 level은 1입니다. depth가 1인 B와 C의 level은 2입니다. D, E, F, G의 레벨은 3입니다. 같은 레벨에 나란히 있는 노드를 형제 노드(sibling Node) 라고 합니다.

높이(Height)

트리 구조에서 리프 노드를 기준으로 루트까지의 높이(height)를 표현할 수 있습니다. 리프 노드와 직간접적으로 연결된 노드의 높이를 표현하며, 부모 노드는 자식 노드의 가장 높은 height 값에 +1한 값을 높이로 가집니다. 트리 구조의 높이를 표현할 때에는 각 리프 노드의 높이를 0으로 놓습니다.위 그림에서 H, I, E, F, J의 높이는 0입니다. D와 G의 높이는 1입니다. B와 C의 높이는 2입니다. 이때 B는 D의 height + 1 을, C는 G의 height + 1 을 높이로 가집니다. 따라서, 루트 A의 높이는 3입니다.

서브 트리(Sub tree)

트리 구조에서 root에서 뻗어나오는 큰 트리의 내부에, 트리 구조를 갖춘 작은 트리를 서브 트리 라고 부릅니다. (D, H, I)로 이루어진 작은 트리도 서브 트리이고, (B, D, E)나 (C, F, G, J)도 서브 트리입니다.

 

트리의 가장 대표적인 예제는 컴퓨터의 디렉토리 구조입니다. 어떤 프로그램이나 파일을 찾을 때, 바탕화면 폴더나 다운로드 폴더 등에서 다른 폴더에 진입하고, 또 그 안에서 다른 폴더에 진입하면서 원하는 프로그램이나 파일을 찾습니다. 모든 폴더는 하나의 폴더(루트 폴더, /)에서 시작되어, 가지를 뻗어나가는 모양새를 띕니다.

대표적인 트리 구조: 파일 탐색기

하나의 폴더 안에 여러 개의 폴더가 있고, 또 그 여러 개의 폴더 안에 또 다른 폴더나 파일이 있습니다. 위 그림처럼, 제일 첫 번째 폴더에서 출발하여 도착하려는 폴더로 가는 경로는 유일합니다. 사용자들이 사용하기 편하게 사용하기 위한 파일 시스템 등에서는 트리 구조를 이용해 만들어져 있습니다.

 

 

 

 

 

3. BST (Binary Search Tree)

트리 구조는 편리한 구조를 전시하는 것 외에 효율적인 탐색을 위해 사용하기도 합니다.

수많은 선배 개발자들은 효율적인 탐색을 위해 고민하고 발전시켜 새로운 트리의 모습을 만드는 등 치열한 노력을 쏟았습니다. 그렇기 때문에 트리 구조는 가지고 있는 특징에 따라 여러 가지 이름으로 불립니다.

가장 간단하고 많이 사용하는 이진 트리(binary tree)와 이진 탐색 트리(binary search tree)가 있습니다.

 

먼저, 이진트리(Binary tree)는 자식 노드가 최대 두 개인 노드들로 구성된 트리입니다. 이 두 개의 자식 노드는 왼쪽 자식 노드와 오른쪽 자식 노드로 나눌 수 있습니다.

이진 트리는 자료의 삽입, 삭제 방법에 따라 정 이진 트리(Full binary tree), 완전 이진 트리(Complete binary tree), 포화 이진 트리(Perfect binary tree)로 나뉩니다.

 

 

정 이진 트리 Full binary tree 각 노드가 0 개 혹은 2 개의 자식 노드를 갖습니다.
완전 이진 트리 Complete binary tree 마지막 레벨을 제외한 모든 노드가 가득 차 있어야 하고, 마지막 레벨의 노드는 전부 차 있지 않아도 되지만 왼쪽이 채워져야 합니다.
포화 이진 트리 Perfect binary tree 정 이진 트리이면서 완전 이진 트리인 경우입니다. 모든 리프 노드의 레벨이 동일하고, 모든 레벨이 가득 채워져 있는 트리입니다.

이진 탐색 트리(Binary Search Tree)모든 왼쪽 자식의 값이 루트나 부모보다 작고, 모든 오른쪽 자식의 값이 루트나 부모보다 큰 값을 가지는 특징이 있습니다.

이진 탐색 트리는 균형 잡힌 트리가 아닐 때, 입력되는 값의 순서에 따라 한쪽으로 노드들이 몰리게 될 수 있습니다. 균형이 잡히지 않은 트리는 탐색하는 데 시간이 더 걸리는 경우도 있기 때문에 해결해야할 문제입니다. 이 문제를 해결하기 위해 삽입과 삭제마다 트리의 구조를 재조정하는 과정을 거치는 알고리즘을 추가할 수 있습니다.

 

 

 

 

Tree Search Algorithm

 

특정 목적을 위해 트리의 모든 노드를 한 번씩 방문하는 것을 트리 순회라고 합니다. 1에서 10까지의 정수로 구성된 트리에서 3이라는 숫자를 찾기 위해 모든 노드를 방문하는 경우는 트리 순회의 한 예시입니다. 트리 구조는 계층적 구조라는 특별한 특징을 가지기 때문에, 모든 노드를 순회하는 방법엔 크게 세 가지가 있습니다.

트리를 순회할 수 있는 세 가지 방법은 전위 순회, 중위 순회, 후위 순회입니다. 이 순회 방식과는 논외로, 트리 구조에서 노드를 순차적으로 조회할 때의 순서는 항상 왼쪽부터 오른쪽입니다.

 

 

전위 순회

가장 먼저 방문할 노드는 루트입니다. 루트에서 시작해 왼쪽의 노드들을 순차적으로 둘러본 뒤, 왼쪽의 노드 탐색이 끝나면 오른쪽 노드를 탐색을 합니다.

 

중위 순회

루트를 가운데에 두고 순회합니다. 제일 왼쪽 끝에 있는 노드부터 순회하기 시작하여, 루트를 기준으로 왼쪽에 있는 노드의 순회가 끝나면 루트를 거쳐 오른쪽에 있는 노드로 이동하여 마저 탐색합니다.

 

 

후위 순회

루트를 가장 마지막에 순회합니다. 제일 왼쪽 끝에 있는 노드부터 순회하기 시작하여, 루트를 거치지 않고 오른쪽으로 이동해 순회한 뒤, 제일 마지막에 루트를 방문합니다.

 

 

 

반응형